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Abstract. The interstitial electron model (m) of Li and Goddard has reproduced with good 
success the phonon dispersion curves of many face-centred cubic (FCC) metals. The key 
feature of the model is the location of light interstidal particles in the teuahedral holes of 
the sWcUm. In this paper the validity of the model is further tested (i) by applying it to three 
additiond FCC metals, p.3, La and Th; (ii) by nsing it to calculate anharmonic properties; 
( 3 )  by considering extensions to hexagonal close-packed (HCP) and body-centred cubic (BCC) 
mwls. These demanding tests reveal several shortcomings. There i s  good apement far the 
experimental dispersion curves of &CO and La, but anly if additional interactions and input 
data are used in the fining; the agreement for Th is only fai~. Applied to anharmonic properties 
of FCC metals, the EM cannot explain simulwneously both the temperature dependence of the 
Griineisen function and the pressure dependence of the second-order elastic stiffnesses. Other 
than for Mg and rr-CO, it cannot reproduce the frequency dispersion curves of HCP metals. Its 
use for BCC systems is impractical due to the lPge number of parametns required. Even where 
the model is successful in predicting dispersion curves, equally sarisfactory agreement can be 
obtained with a valence forcsfield, sometimes with fewer adjustable parameters. 

1. Introduction 

The use of pair potentials alone to represent the interatomic forces in metals has serious 
deficiencies, including the inability to explain violations of the Cauchy relations between 
elastic stiffnesses, or even the qualitative form of some phonon dispersion curves. The 
interstitial electron model (BM) of Li and Goddard (1989, 1993) surmounts this difficulty 
by introducing light interstitid particles, which interact both with each other and the 
metal atoms through short-range pair potentials. This model was suggested by ab initio 
calculations on small metal clusters, which show a concentration of the valence electron 
density at interstitial regions between the atoms rather than around individual atomic centres 
(McAdon and Goddard 1985, 1987-see also Tomaghi eta1 1991, 1992, Lepetit etal 1990, 
1992). Li and Goddard placed the interstitial particles in tetrahedral holes of the face-centred 
cubic (FCC) structure, where previous generalized valence bond 'calculations (McAdon and 
Goddard 1985, 1987) had indicated an accumulation of charge. Since these sites (unlike the 
octahedral holes) are not centres of inversion symmetry, the model no longer has to satisfy 
the Cauchy relations, and so the interstitial particles provide effective non-central forces 
between the ions. For simplicity, the metal atoms and interstitials were taken as uncharged, 
and account was taken only of nearest-neighbour ion-ion, ion-interstitial and interstitial- 
interstitial pair interactions. The condition of zero pressure then gave five independent 
force constants, which were fitted to the three elastic stiffnesses and the two frequencies at 
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the X point. The calculated phonon dispersion curves for a range of FCC metals were in 
good agreement with experiment. Schultz and Messmer (1992) have also used the model to 
calculate dispersion curves of the FCC alloy NbAI, and again the agreement with experiment 
was satisfactory. 

In this paper we submit this model to further tests. Theoretical methods are described 
in section 2. We then extend the calculations to three additional FCC metals (section 3), 
including the f-block metals La and Th. Next we examine the ability of the IEM to account 
for essentially anharmonic properties, namely the pressure dependence of the second-order 
elastic constants and the temperature dependence of the Griineisen function (section 4). 

A further test is to apply the IEM to metals with Structures other than FCC. In section 5 
we consider hexagonal closepacked (HcP) metals. The theory is more complicated than for 
FCC systems; not only are there more species in the unit cell, but also the position of the 
interstitial particles in the tetrahedral holes is no longer fixed by symmetry. In section 6 we 
discuss the IEM critically, comparing it with other models of comparable simplicity. 

2. Theoreticat methods 

The IEM has been described in detail for FCC metals by Li and Goddard (1989, 1993), and 
we follow their notation. Interstitial particles are placed in the tetrahedral holes. Allowing 
only for two-body interactions, there are three independent potentials, $ii-i(r), &j(r) 
and &-=(r) representing ion-ion, ion-interstitial and interstitial-interstitial interactions 
respectively. For harmonic properties; it is necessary to know the values of fl = d$/dr 
and 4‘’ = dz@/drz at the appropriate separations. Further parameters (4”’ = d3@/dr3) are 
needed for anharmonic properties. 

The space group of the FCC metals is 0: (Fm3m). There are three particles in 
the primitive cell-one ion at (O,O,O) and two interstitial electrons in tetrahedral holes 
at (a/4, a/4, a/4) and (3a/4,3a/4,3a/4). If nearest-neighbour interactions alone are 
considered, only five of the resulting six parameters are independent, because of the 
equilibrium condition; these can be determined analytically from the three elastic constantS 
and two vibrational frequencies (e.g., at the X point). Further harmonic properties such as 
the phonon dispersion relations are then calculated using these parameters. For anharmonic 
properties, values for @’‘ = d34/drg can be obtained by fitting either third-order elastic 
constants or the pressure derivatives of the second-order elastic constants. The possibility of 
including interactions other than those between nearest neighbours is dealt with in section 3. 

The space group of HCP metals is D& (P6g/mmc). There are six particles in the unit 
cell-two ions at (0,O.O) and (a/2, a/2& c/Z), and four interstitial particles in tetrahedral 
holes at (0, a/&, ihc) and (0, 0, ( i i h ) c ) .  Only for ideal packing (cia =-a) can the 
interstitial positions be fixed by the regularity of the tetrahedron, when h = 3/8. For real 
metals h is treated as an additional parameter (see figure 1). The HCP model is appreciably 
more complicated than the FCC.  even^ with ideal packing, there are three distinct interstitial- 
interstitial distances and one ion-interstitial distance smaller than the nearest-neighbour 
ion-ion separation; there are more such distances when the packing is non-ideal. We have 
investigated the effect of including various numbers of interactions (section 5). 

The space group O f  BCC metals is 0; (Zm3m). There are seven particles in the primitive 
unit cell-one ion at (O,O,O) and six tetrahedral interstitial positions at (0, a/2 ,  fa /4) ,  
( i a /4 ,0 ,  a/2), (a/Z, &a/4,0). There are now many interparticle separations-six distinct 
interstitial-interstitial and one ion-interstitial distances not greater than that between nearest- 
neighbour ions, giving 16 parameters altogether. This is too many for practical applications, 
and so we have not pursued this further. 



The interstitial electron model for metals 561 1 

Figure 1. Part of the HCP lattice showing tetrahedral sites for interstitial pkrricles. The interstitial 
positions are denoted by sinall black circles. The heights of these positions a e  determined by 
the variable parameter h. 

3. FCC met&-harmonic properties 

We have examined three FCC metals not considered by Li and Goddard-P-Co, La and Th. 
Following their procedure (in which only nearest-neighbour interactions are considered), 
the six potential parameters were obtained using the data of table 1 and the two phonon 
frequencies at the X point (Reese etal 1973, Svensson eta1 1979, Stassis etal 1982). These 
parameters were then used to calculate the phonon dispersion curves shown in figure 2. 
Surprisingly, the agreement with experiment is much poorer for all three metals than for 
those systems (AI, Ca, Sr, y-Fe, Ni, Pd, Pt, Cu, Ag and Au) considered by Li and Goddard. 
We therefore added to their model one further interstitial-interstitial interaction at a distance 
of a/& (which is also the nearest-neighbour ion-ion distance), and fitted the model in 
a different way. We used all the experimental phonon data, and obtained the potential 
parameters by least-squares fitting. The resulting phonon dispersion curves, which overall 
are in rather better agreement with experiment, are also shown in figure 2. Even so, only 
for La were the fitted frequencies at the points X and L within experimental error. For Th 
and ,¶-CO the best fits resulted in differences at the X point between theory and experiment 
of % 6.0% and 3.0% respectively. The final set of potential parameters obtained by 
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Figure 2. Experimental (points) phonon dispersion curves for P-Co (Svensson et 01 1979). La 
(Smsis er al 1982) and Th (Reese el nl 1973). The solid Lines are the curyes calculated from 
the six-parameter EM model using the lattice spacings, elastic constants and the frequencies 
at the X point in the analysis. The dashed lines are mmes calculated from an eight-parameter 
model. using all the experimental data and a least-squares fitting procedure 10 obtain the potential 
parameters. 
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Figure 2. (Continued) 

Table 1. The lartice consmts, og (A), and the elastic stiffiesres, CI1, CZz and C33 (10” Pa), 
used to parametrize the IEM for @-CO (Hearmon 1979), La (Stassis 1982) and Th (Hearmon 
1979). 

Metal no CII CIZ CM 

@-CO 3.54 2.60 1.60 1.10 
La 5.30 2.85 2.04 1.65 
Th 5.08 7.70 5.09 4.55 

Table 2. The final potential parameters for @-CO. La and Th. In specifying the intencdans, i 
refers to an ion, e to an interstitial electron. The value of r given (in A) for each interaction 
denotes the relevant interparticle separation. The units of @‘/r  and 6” are N 6’. 

@-a La Th 

Interaction I 4’lr 6” r 6’17 6” I 6’lr 6” 
b e  1.533 16.460 23.134 2.295 . 10.634 11.587 2.200 1.324 1.682 
e-t 1.770 -3.175 -4.596 2.650 -2.632 5.589 2.540 1.581 -4.596 
e-< 2.503 1.026 1.073 3.745 0.616 2.159 3.592 0.614 1.073 
i-i 2.503 -8.694 21.476 3.745 -5.233 1.862 3.592 -2.680 22.027 

least-squares fitting are listed in table 2. The agreement with experiment is not improved 
appreciably by including additional interactions. 

The lattice contribution to the heat capacity predicted by all the models is in good 
agreement with experiment for p-CO and Th up to 6’~/4 (where OD is the Debye 
temperature). At higher temperatures anharmonic contributions become important, and 
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at 300 K, differences between experimental and theoretical Cv values are about 11% and 
8% for Th and B-Co respectively. We have not found any heat capacity data for La. 

G D Barrera et a1 

4. FCC metals-anharmonic properties 

Here we consider both the higher-order elasticity and the thermal expansion. Rather than 
calculating the thermal expansion coeffficient /3 itself, we derive the lattice contribution to 
the Griineisen function y .  which is more suitable for graphical comparison of experiment 
with theory. y gives the rate of increase of pressure with internal energy density, 

Y = [ ~ P I ~ ( U I V ) I ~  

It is derived from experimental data by means of the identity 

Y = PVIXSCP 

where Cp is the heat capacity at constant pressure and xs the adiabatic compressibility. 
Theoretically, in the quasiharmonic approximation (see, e.g., Barron et a1 1980), the lattice 
contribution is 

where cj is the contribution to the heat capacity of the j th normal mode with frequency v j ,  

and yj is the mode Griineisen parameter defined by 

yj = -dInuj/dlnV. 

We consider specifically Cu, Ag and Au because Li and Goddard found that the E M  gave 
dispersion curves for these metals in excellent agreement with experiment. The calculation 
now involves the additional parameters 

q5“’ = d3q5/dr3. 

These were obtained from the experimental pressure derivatives of the second-order 
stiffnesses, Cij, which are linear functions of the @”. The elastic data (with ao) are listed 
in table 3, and the resulting potential parameters in table 4. 

Table 3. The lattice conslants. QI (A). the second-order elastic conslants (IO” Pa) (Schober 
and Dederichs 1981) a d  their pressure dedvatives (dimensionless) (Daniels and Smilh 1958), 
used to p m e v j z e  the IEM for Cu, Ag and Au. 

Metal uo CII c12 c44 c;, c;, g, 
~ , , , , . , , , , .  , , , , , , , ,  , , ,  , , 

C” 3.615 1.684 1.214 0.754 5.91 5.03 2.63 
Ag 4.086 1.240 0.934 0.461 5.12 3.61 3.04 
Au 4.078 1.930 1.634 0.420 7.01 6.14 1.79 
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The value of the lattice contribution to the Griineisen function in the limit T -+ 0, yo, 
is determined by the C;j independently of the model, since in this limit only elastic modes 
contribute to thermodynamic properties. Values of y at higher temperatures, however, are 
model-dependent, and were calculated by means of first-order perturbation theory (see, e.g., 
Wallace 1972, Barron and Pastemak 1987). The calculated high-temperature limits, ym, are 
considerably higher than those measured experimenlally (table 5), revealing a much greater 
variation of y ( T )  with temperature than that observed (see figure 3 for the case of Cu). In 
an attempt to improve the agreement, we also tried a least-squkes procedure to obtain the 
@", including the experimental values of ym in the fit. This was largely unsuccessful. For 
Cu, the fitted value of ym decreased only to 2.24, while the fitted CL increased by 16% 
from 2.27 to 2.63. For each metal, the difference between ym and yo is still much larger in 
the IEM than that observed. 

Table 5. Experimentd values (White and Collins 1972) of the Griineisen functions ym and 
XI. corresponding to the limits T -+ m and T -+ 0 respectively, for Cu. Ag and An. The 
wlwlated values of ym are also given. 

Cu Ag Au 

ym (dc.) 2.50 3.26 3.41 
ym (exp.) 1.98 2.38 2.96 
n, (exp.) 1.738 2.14 2.91 

. . I  , , , , . ,  

Temperature (K) 
Figure 3. The calculated and experimental (White and Collins 1972) variation of y d T )  with 
T for copper. 
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5. HCP metals-harmonic properties 

We have considered a wide range of HCP metals. Even with a potential cut-off just larger 
than the nearest-neighbour ion-ion separation there are more interactions to consider than 
for FCC metals. 

In our first calculations on HCP metals (not ideally packed) we took account of two 
ion-ion intemctions (corresponding to the two smallest separations of 0.319 A and 0.321 A 
for Mg), the ion-interstitial interaction (at 0.196 A for Mg) and two interstitial-interstitial 
interactions (0.128 A and 0.227 A for Mg). This gives a total of ten potential parameters, of 
which seven are independent because there are three equations for mechanical equilibrium. 
A least-squares fit to the elastic constants given in table 6, together with selected phonon 
frequencies, gave the model parameters listed in table 7. 

Table 6. The lattice constants a,, (A) and CO (A), and the elastic stiffnesses (IO" Pa). used to 
panmeIAze the EM for Mg and a-CO (Schober and Dederichs 1981). 

Metal UII CO CI I . 

Mg 3.21 5.21 5.943 2.561 2.144 6.241 1.641 
ar-Co 2.51 4.07 30.63 1651 10.19 35.74 7.53 

c33 c44 clf c13 - 

Table 7. The final potential p-eters far Mg and ar-Co. For the notation used see the caption 
to table 2. 

Mg a-CO 

Interaction r 8'lr 8" r 8'Jr Q 
e-e 1.287 1.289 -1.308 1.003 10.274 6.565 
i-e 1.962 -0.138 3.279 1.534 -2.694 35.195 

i-i 3.197 -0.144 10.824 2.498 -0.347 30.646 
3.210 -0.004 10.040 2.510 , 0.794 32.383 

e-e 2.275 0.421 -1.996 1 . 7 ~  3.354 3.852 

. .  
1--l 

The final dispersion curves for Mg and a-CO are shown in figure 4. These are in 
reasonable agreement with experiment. Extending the potential to include the second set of 
interstitial-interstitial interactions (at 0.319 A and 0.321 A for Mg) had only a very small 
effect on the final curves, as did varying h. 

We also tried explicit forms for the potentials (Lennard-Jones, Buckingham and a 
Buckingham form with additional r-" terms) and adapted the least-squares procedure to 
determine the corresponding parameters. The results obtained showed no improvement. 

The EM failed to give even a qualitative description of the phonon dispersion curves 
for all the other HCP metals we examined (Zn, Zr, Sc, Y and Ho). 

6. Discussion and conclusions 

We have applied a series of skingent tests to the EM. In general it gives a good description of 
the dispersion curves of Fcc metals, but no better than can be obtained from other models of 
comparable simplicity. In particular one of us (Barrera 1994) has found that the dispersion 
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Figure 4. Experimental (poinu) phonon dispersion c w e s  far @-CO (Wakabaynshi eta1 1982) 
and Mg (Stassis et nl 1982). The solid lines are the e w e s  calculated from the fined en- 
parameter m model. 
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curves of all the FCC metals so far treated by the IEM can be fitted equally well or better 
by a five-parameter model which includes an angle potential in addition to pair potentials. 
This model can also give good agreement with anharmonic' data. The EM fails other tests 
badly, as detailed below. 

(i) It is impossible to get a good fit to both aCA,/aP and y ( T )  of FCC noble metals. 
primarily because of a large variation in y(T) which persists even when all C"' parameters 
are set to zero. In comparison a model which considers only nearest-neighbour pair 
potentials (Barron 1955) gives ym - yo 0.3, in qualitative agreement with experiment. 
A three-body potential model with three harmonic and one anharmonic parameter has been 
successful in reproducing both the pressure dependence of the elastic constants and the 
temperature dependence of the Griineisen function (Barrera and Batans 1993a, b). 

(ii) For HCP metals, it has been possible to obtain a reasonable fit to the dispersion 
curves and elastic constants only for Mg and B-CO, the same metals that historically have 
been found relatively easy to fit using other models (see, e.g., work cited by Schober and 
Dederichs 1981). The potential for 0-CO is not transferable to a-Co. 

(iii) There appear to he no clear trends in the values of the parameters from one metal 
to another. This is in marked contrast to parameters in other potential models incorporating 
three-body forces (e.g. Barrera and Batana 1993a, b). 

It is of course possible that some of these shortcomings could be remedied by 
modifications of the model. The number of parameters for HCP and BCC structures could be 
reduced by further approximations. Future work could include a systematic study of such 
an approach, including the use of explicit forms for the pair potential and the incorporation 
of charged particles. 

As pointed out by Li and Goddard, the EM has a direct physical appeal similar to the 
shell model p i c k  and Overhauser 1958, Cochran 1971), in that the forces are represented 
by a simple mechanical model. Nevertheless there are important distinctions between the 
two. The shell model can be seen to represent two interrelated effects-the polarization 
of the ions by electric fields and the distortion caused by overlap-and so to some extent 
genuinely represents the underlying physics. The IEM is on much less certain ground. Not 
only may it overemphasize the concentration of electron density at tetrahedral sites, but also 
there is no convincing evidence, either experimental or theoretical, that the EM represents 
how the electrons respond to the motion of the ions. The EM appears to be chiefly of value 
for its own sake, in that it represents a new type of potential which may behave in ways 
different from all other known models. In this context the behaviour of y ( T )  is interesting, 
as it provides a rare example of the effect of anharmonicity in non-central components of 
the forcefield. 
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